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Ramoplanin (Figure 1) is a cyclic lipoglycodepsipeptide
antibiotic that inhibits the biosynthesis of peptidoglycanke
bacitracin and vancomycin, ramoplanin is believed to be a
substrate binder, a molecule that inhibits an enzymatic transfor-
mation by docking to a required substrate. Ramoplanin binds
selectively to Lipid Il, a membrane-anchorg(1,4)-linked
GlcNAc-MurNAc disaccharide that is polymerized by the trans-
glycosylases located on the outer surface of the bacterial
membrané. Both the disaccharide and the diphosphate linkage
of Lipid Il play a role in recognition by ramoplani#;however,
there is no detailed information on the structure of the complex
because it aggregates in water upon binding substridtrein
we describe the solution structure of a ramoplanin dimer that may
provide insight into how this antibiotic assembles with itself and
Lipid 1.

The structure of a ramoplanin analogue in water was reported
in 1991 and showed a bent antiparaflettranded conformatioh.

It was proposed that the ligand binds in the cleft created by the

bend; however, a higher-resolution aqueous structure of ramopla-

nin shows no space in the purported cleft for a ligafdhus, the

aqueous structure of ramoplanin does not shed much light on how

Lipid 1l might bind. We began to wonder whether water was the
best solvent in which to study ramoplanin given that the molecule
binds to Lipid Il at a membrane interface where the physical
properties differ from those in bulk waterTherefore, we

examined the solution structure of ramoplanin under nonaqueous

conditions to determine if it is capable of adopting another
conformation that might be germane to Lipid Il binding.

Figure 2 shows a pair of 1D NMR spectra of ramoplanin in
D,O and CROD at a concentration of 0.5 mM. Two differences
between the BD and CROD spectra are immediately apparent.
First, the resonance lines in,O are sharp, whereas those in
CDsOD are relatively broad. Second, there are more signals in
CD;0D than in BO. These observations indicate that ramoplanin
in CD3OD is in slow exchange between different states. Analysis
of 2D NMR spectra in CBOD of ramoplanin reveals two sets of
proton resonances, indicating two distinct states. The relative

intensities of each set of resonances change with concentratior®

(Figure 3). Therefore, we have concluded that each set of reso-

nances corresponds to a different association state of ramoplanin:

The state predominating at low concentrations was identified
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Figure 1. Structure of ramoplanin A2.
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Figure 2. Ramoplanin A2 in RO (bottom), and CBOD (top) at 25°C.
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Figure 3. Upfield region of ramoplanin in CEDD at different concentra-
tions (5°C). Note the change in relative intensities of the upfield methyl
resonances.

similar to those for ramoplanin in agueous solution. The other
tate involves more than one ramoplanin molecule, but it has only
one set of signals for each ramoplanin proton. The simplest model
consistent with this observation is a symmetric dimer. NMR
diffusion measuremerftsshow that the ratio of the diffusion

as a monomer because both the chemical shifts and NOEs ar&onstants for the two species is 0.84, which strongly supports
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the conclusion that the second species is a diifer.

Full assignments for the proton resonances of the dimer were
made from a combination of DQ-COSY, TOCSY, and NOESY
spectra in COD and CROH. Each subunit of the dimer in
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in the dimer form in the less polar solvent ID,0D, even at
very low NMR concentrations.

The manner in which ramoplanin associates is reminiscent of
the cyclicb,L-peptides studied by Ghadiri and othétsAt the
dimer interface, ramoplanin displays the same pattern of alternat-
ing stereochemistry as these peptides (Figure 5), with the result
that successive side chains all project from the same face,
perpendicular to the hydrogen bonded backbone. In organic
solvents, cyclicpo,L-peptides tend to form infinite hydrogen-
bonded stacks unless one face of the ring is sterically blo€ked.
In hydrogen-bonding solvents, synthatic-peptides typically do
not associate into stable structures except at high concentrations
that allow crystallization into ordered “nanotubé&Ramoplanin

b 4 is remarkable because it can self-assemble to form stable dimers

’ ' in solvents that are capable of competitive hydrogen-bonding
Figure 4. Ramoplanin aglycon dimer. 308 NOEs for each monomer, interactions:’” Furthermore, it can exist as a monomer, dimer, or
including 83 long-range NOEs=(i, i + 3), and 28 NOEs across the ~ Polymer, depending on solvent and the presence of ligaHd.
dimer interface were used in the calculations. Key ornithine (Orn) residues Unlike most of the synthetio,L-peptides that have been studied
flanking the potential binding clefts are indicated. The disaccharide on Previously, ramoplanin contains interruptions in the alternating
the side chain of residue 11 would project from the front and back of the D,L-pattern of amino acids. These interruptions influence the
structure shown. conformation of the macrocycle and may help control the delicate
balance between aggregation states.

The ramoplanin dimer observed in gDD suggests a mech-

o i MR h /ﬁ\g/ﬂ i anism of action in which the antibiotic exists as a monomer in
] AN N7 RNy W/ . . .
of(-so'\ Heeo® o H oeH 3| water, but self-associates to form a dimer as it approaches the
s Nt N/‘S’\(ﬁ 8 'N‘; ﬁ\a{ e. membrane-water interface. Although the monomer itself does
s L R A N not contain an apparent binding pocket, dimerization creates two
oy | e ot j\\g possible clefts that could accommodate the disaccharide of Lipid
h’\” 2”, N > N (TN S 11.2° The positively charged amines of the Orn4 residues flank
/‘i"’ R n\/‘i s H TP one cleft, while those of the Orn10 residues flank the other cleft,
-4 ﬁ)“\n/ o ;s g/s\ﬂ/ ; NTe and either pair could interact with the negatively charged
© © 0 pyrophosphate that has been shown to be important for binding

Figure 5. Partial schematic of the ramoplanin dimer backbone showing to Lipid I1.2° The biological relevance of the dimer can be tested
key inter- and intramolecular hydrogen bonds. Side chains were removedby chemically modifying ramoplanin and determining whether
for clarity. there is a correlation between biological activity, dimer formation,
and the ability to bind Lipid l/Il. In the meantime, we note that

methanol has NOEs similar to those for the monomer, suggestingthe structure of this ramoplanin dimer provides clues to new ways
that the ramoplanin backbone is relatively ri§iNOEs incompat- to engineer cycliom,L-peptides to control their conformational
ible with those characteristic of the monomer were assigned asproperties and aggregation states
intermolecular.
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